Softenin, a Novel Protein That Softens the Connective Tissue of Sea Cucumbers through Inhibiting Interaction between Collagen Fibrils
نویسندگان
چکیده
The dermis in the holothurian body wall is a typical catch connective tissue or mutable collagenous tissue that shows rapid changes in stiffness. Some chemical factors that change the stiffness of the tissue were found in previous studies, but the molecular mechanisms of the changes are not yet fully understood. Detection of factors that change the stiffness by working directly on the extracellular matrix was vital to clarify the mechanisms of the change. We isolated from the body wall of the sea cucumber Stichopus chloronotus a novel protein, softenin, that softened the body-wall dermis. The apparent molecular mass was 20 kDa. The N-terminal sequence of 17 amino acids had low homology to that of known proteins. We performed sequential chemical and physical dissections of the dermis and tested the effects of softenin on each dissection stage by dynamic mechanical tests. Softenin softened Triton-treated dermis whose cells had been disrupted by detergent. The Triton-treated dermis was subjected to repetitive freeze-and-thawing to make Triton-Freeze-Thaw (TFT) dermis that was softer than the Triton-treated dermis, implying that some force-bearing structure had been disrupted by this treatment. TFT dermis was stiffened by tensilin, a stiffening protein of sea cucumbers. Softenin softened the tensilin-stiffened TFT dermis while it had no effect on the TFT dermis without tensilin treatment. We isolated collagen from the dermis. When tensilin was applied to the suspending solution of collagen fibrils, they made a large compact aggregate that was dissolved by the application of softenin or by repetitive freeze-and-thawing. These results strongly suggested that softenin decreased dermal stiffness through inhibiting cross-bridge formation between collagen fibrils; the formation was augmented by tensilin and the bridges were broken by the freeze-thaw treatment. Softenin is thus the first softener of catch connective tissue shown to work on the cross-bridges between extracellular materials.
منابع مشابه
Towards a fibrous composite with dynamically controlled stiffness: lessons from echinoderms.
Sea urchins and sea cucumbers, like other echinoderms, control the tensile properties of their connective tissues by regulating stress transfer between collagen fibrils. The collagen fibrils are spindle-shaped and up to 1 mm long with a constant aspect ratio of approx. 2000. They are organized into a tissue by an elastomeric network of fibrillin microfibrils. Interactions between the fibrils ar...
متن کاملThe Protein Precursors of Peptides That Affect the Mechanics of Connective Tissue and/or Muscle in the Echinoderm Apostichopus japonicus
Peptides that cause muscle relaxation or contraction or that modulate electrically-induced muscle contraction have been discovered in the sea cucumber Apostichopus japonicus (Phylum Echinodermata; Class Holothuroidea). By analysing transcriptome sequence data, here the protein precursors of six of these myoactive peptides (the SALMFamides Sticho-MFamide-1 and -2, NGIWYamide, stichopin, GN-19 an...
متن کاملAsexual Reproduction in Holothurians
Aspects of asexual reproduction in holothurians are discussed. Holothurians are significant as fishery and aquaculture items and have high commercial value. The last review on holothurian asexual reproduction was published 18 years ago and included only 8 species. An analysis of the available literature shows that asexual reproduction has now been confirmed in 16 holothurian species. Five addit...
متن کاملTensilin-like stiffening protein from Holothuria leucospilota does not induce the stiffest state of catch connective tissue.
The dermis of sea cucumbers is a catch connective tissue or mutable connective tissue that exhibits large changes in mechanical properties. A stiffening protein, tensilin, has been isolated from the sea cucumber Cucumaria frondosa. We purified a similar protein, H-tensilin, from Holothuria leucospilota, which belongs to a different family to C. frondosa. H-tensilin appeared as a single band wit...
متن کاملA novel stiffening factor inducing the stiffest state of holothurian catch connective tissue.
The dermis of sea cucumbers is a catch connective tissue or mutable collagenous tissue that shows large changes in stiffness. Extensive studies on the dermis revealed that it can adopt three different states having different mechanical properties that can be reversibly converted. These are the stiff, standard and soft states. The standard state is readily produced when a dermal piece is immerse...
متن کامل